

Catalysis Today 132 (2008) 165-169

Synthesis, characterization and photocatalytic activity of N-doped TiO₂ modified by platinum chloride

Shinya Higashimoto*, Yoshiaki Ushiroda, Masashi Azuma, Hiroyoshi Ohue

Department of Applied Chemistry, College of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan

Abstract

Structures and photocatalytic performance of N-doped TiO_2 modified by platinum chloride $(PtCl_x/N-TiO_2)$ was investigated. It was found that the $PtCl_x/N-TiO_2$ forms anatase structure of TiO_2 involving nitrogen, chloride species and platinum ions (+IV) as major species, and it exhibits higher photocatalytic activity than either N-TiO₂ or $PtCl_x/TiO_2$ for the decomposition of acetic acid or acetaldehyde in aqueous solutions under visible light irradiation ($\lambda > 420$ nm). An enhancement of the photocatalytic activity on $PtCl_x/N-TiO_2$ has been proposed as a Z-scheme mechanism for charge separation between platinum chloride and N-TiO₂.

© 2008 Elsevier B.V. All rights reserved.

Keywords: Visible light; Photocatalyst; N-doped TiO2; Platinum chloride; Z-scheme mechanism

1. Introduction

Since Honda-Fujishima effect was discovered [1], TiO₂ photocatalysts have been extensively studied for environmental applications to reduce toxic agents in the polluted atmosphere or water. However, TiO₂ (anatase) works as a photocatalyst only under UV-light (3.2-3.4 eV) irradiation, so that it is desired that sunlight can be more effectively utilized in photocatalysis. One of the most promising photocatalysts are nitrogen-doped TiO₂ (N-TiO₂), which works for various photocatalytic reactions under visible light irradiation [2-12]. Since Asahi et al. have reported photocatalytic activities and photofunctional properties of N-TiO2 under visible light irradiation [2], many researchers have endeavored to synthesize and characterize N-TiO₂ in order to improve the photocatalytic activity. However, by doping nitrogen atoms, the oxygen vacancy is created in N-TiO2 prepared by sol-gel method for a charge compensation. The excess oxygen vacancy works as the recombination center for the photo-induced holes and electrons. In order to suppress the recombination, Morikawa et al. reported that photocatalytic decomposition of acetaldehyde in the gas phase was enhanced on N-TiO₂ by loading with copper ions under visible light irradiation [13]. Ohno et al. also reported that the photocatalytic activities for oxidation of 2-propanol on S- or N-doped TiO₂ adsorbed Fe³⁺ ions are markedly improved compared to those of S- or N-doped TiO₂ under both UV-light and visible light irradiation [14].

Recently, we reported that the photocatalytic activity of N-TiO₂ modified by platinum chloride (PtCl_x/N-TiO₂) was remarkably improved compared with N-TiO₂ or PtCl_x/TiO₂ [15]. Here, we report on details of the characterization and the photocatalytic reactions under visible light irradiation, and have proposed a possible reaction mechanisms on the PtCl_x/N-TiO₂.

2. Experimental details

2.1. Materials

The N-doped TiO₂ (N-TiO₂) was prepared by the hydrolysis of 35 mL of tetra-isopropyl titanate (TiPOT) with 100 mL of an ammonium aqueous solution (28–30 wt.% as NH₃) at room temperature under vigorous stirring, washed

^{*} Corresponding author. Tel.: +81 6 6954 4283; fax: +81 6 6957 2135. *E-mail address:* higashimoto@chem.oit.ac.jp (S. Higashimoto).

several times with distilled water, recovered by filtration, dried at 343 K for 12 h and calcinated at various temperatures (473-873 K) for 3 h in air. As far as condition is not described, the N-TiO₂ calcinated at 673 K was utilized for the characterization and the photocatalytic reactions. Commercial TiO₂ samples, P-25 (a mixture of anatase and rutile phases; BET: $\sim 50 \text{ m}^2/\text{g}$) supplied by Degussa and ST-01 (anatase, BET: \sim 320 m²/g) by Ishihara were used for comparison. The N-TiO₂ and TiO₂ were modified by adsorption of platinum chloride from an aqueous solution of 0.01M H₂PtCl₆ at room temperature in the dark for 1.5 h. The solid products were washed several times with distilled water, recovered by filtration, dried at 343 K for 12 h, then the Pt-loaded N-TiO₂ and TiO₂ were labeled PtCl₂/N-TiO₂ and PtCl_x/TiO₂, respectively. Here, x is an unidentified number. The amount of Pt loadings for the sample was determined by atomic absorption spectroscopy.

2.2. Sample characterizations

The X-ray diffraction (XRD) patterns were obtained with a RIGAKU RINT2000 using Cu K α radiation ($\lambda = 1.5417 \text{ Å}$). The UV-vis spectroscopic measurements were carried out using a UV-vis recording spectrophotometer (UV-2200A, Shimadzu). The atomic composition of samples was analyzed with X-ray photoelectron spectroscopy (ESCA 3400, Shimadzu). The Au 4f_{7/2} (83.8 eV) as an internal standard was used for an energy calibration. The ESR spectra were recorded with a JEOL-2X spectrometer (X-band) at 77 K. The flatband potentials of the samples were measured by the Motto-Schottky plots in an aqueous solution of 0.5 M of acetic acid using a potentiostat (HZ3000, Hokuto Denko). In order to measure the flatband potentials, working electrodes were prepared by spreading a paste of catalysts with water onto the ITO-glass (10 Ω cm⁻²) and drying at 343 K in air for 1 h. The film mass of electrodes is adjusted to be 1.20 ± 0.050 mg/cm² (film thickness: ca. 80-90 µm).

2.3. Photocatalytic reactions

Photocatalytic tests of samples were carried out in the Pyrex tube (20 mL) involving 10 mL of aqueous solutions of 0.5 M of acetic acid or acetaldehyde purged by O₂ in gas phase at room temperature. Photo-irradiation was performed with a 500 W xenon lamp (Ushio Inc.) through a low cut-off filter, Y-45 $(\lambda > 420 \text{ nm})$ (Asahi Technoglass Co. Ltd.). The photoreaction cell was placed at photo-intensity by 10 mW cm⁻² at 365 nm under full arc from xenon lamp. The products were analyzed by a gas chromatograph equipped with a thermal conductivity detector (TCD) for analysis of CO₂. In blank tests, photo-irradiation of catalysts suspended in distilled water evolved small amounts of CO2. On the other hand, no decomposition of reactants took place under photo-irradiation without any catalysts. From these results, the photocatalytic activity was evaluated after subtracting the CO₂, yielded by blank tests from those by the photocatalytic decomposition of reactants.

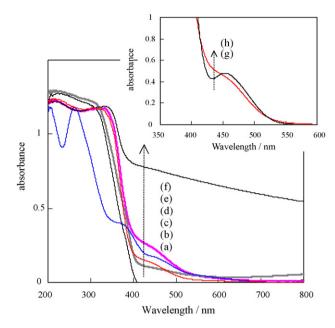


Fig. 1. UV–vis absorbance spectra of (a) TiO_2 , (b) $PtCl_x/TiO_2$ (0.7 wt.% as Pt), (c) N-TiO₂, (d) $PtCl_x/SiO_2$, (e) $PtCl_x/N$ -TiO₂ (0.8 wt.% as Pt) and (f) Pt^0/N -TiO₂ (0.8 wt.% as Pt). Inset shows the absorbance of 0.01 M of aqueous solutions of (g) H_2PtCl_6 and (h) $PtCl_4$.

3. Results and discussion

Crystal structures of N-TiO₂ are influenced by calcination temperatures of as-prepared N-TiO₂. Structures of N-TiO₂ are amorphous structures at \sim 473 K, anatase structures at 573–773 K, and a mixture of anatase and rutile phases at 873 K from XRD analysis.

The N-TiO₂ calcinated at 673 K for 3 h turns pale yellow, having a band gap at around 400 nm (3.1 eV) together with a sub-band gap at \sim 540 nm (\sim 2.3 eV) as shown in Fig. 1. This sub-band in the visible light region cannot be observed in pure TiO₂. The absorption of visible light region in the spectrum of N-TiO₂ is caused by the excitation of electrons from localized N doping level in the band gap [8]. Furthermore, PtCl_x/N-TiO₂ exhibits an absorption band at around ~ 2.3 eV, which can be superimposed on the absorption bands of N-TiO₂ and aqueous solutions of H₂PtCl₆ or PtCl₄ (Inset of Fig. 1). The visible light absorption band at ~2.3 eV of H₂PtCl₆ or PtCl₄ is assignable to the charge transfer from the ligand (Cl⁻) to platinum (+IV) ions [16]. On the other hand, the Pt⁰/N-TiO₂ thermally reduced in the flow of H₂ at 473 K for 1 h become grey, having broad absorption band towards near infrared region, owing to the formation of platinum particles evidenced by XPS as shown in Fig. 2(e). The PtCl_x/SiO₂ also exhibits the absorption band at around ~ 2.3 eV in the visible region.

The states of platinum chloride on N-TiO $_2$ were investigated. The platinum chloride from aqueous solutions of H $_2$ PtCl $_6$ or PtCl $_4$ is not adsorbed on the N-TiO $_2$ or TiO $_2$ treated by 5% (v/v) hydrofluoric acid, while the platinum chloride are easily adsorbed on the surface of N-TiO $_2$ or TiO $_2$. It was reported that the fluoride ions react with the hydroxyl groups of TiO $_2$ to form \equiv Ti–F species [17]. These results suggest that

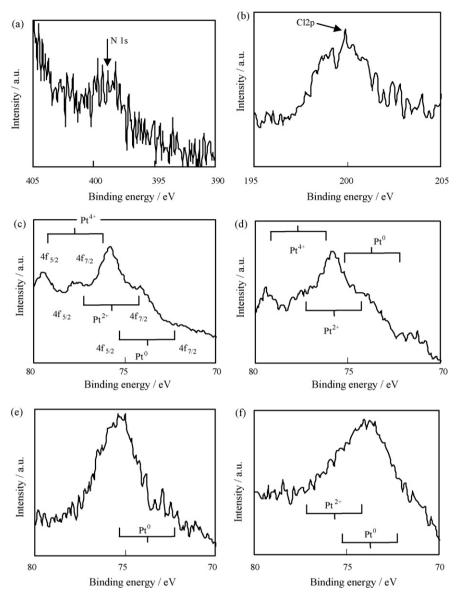


Fig. 2. N 1s, Cl 2p and Pt 4f XPS spectra: (a) N 1s, (b) Cl 2p and (c) Pt 4f for PtCl₃/N-TiO₂; Pt 4f for (d) PtCl₃/TiO₂, (e) Pt⁰/N-TiO₂ and (f) PtCl₃/SiO₂.

platinum chloride strongly interacts with Ti–OH to form Ti–O–PtCl_x.

Fig. 2 shows the N 1s, Cl 2p and Pt 4f XPS spectra of PtCl_x/N-TiO₂, PtCl_x/TiO₂ and PtCl_x/SiO₂. The N 1s peak at 397–400 eV is observed on N-TiO₂ or PtCl_x/N-TiO₂, which is assignable to nitrogen species (Fig. 2(a)) [18,19]. The ratio of N/Ti on N-TiO₂ and PtCl_x/N-TiO₂ are roughly estimated to be 0.34 and 0.29 at.%, respectively. Thus, the N-TiO₂ prepared by hydrolysis involves low quantity of N calcinated at 673 K, as reported by Sato et al. [5]. On the other hand, the ESR signal owing to N radicals is observed on N-TiO₂ and PtCl_x/N-TiO₂. These species are considered to play a vital role in visible light response [8]. The Cl 2p peak at 197-201 eV is observed on the PtCl_x/N-TiO₂, PtCl_x/TiO₂ and PtCl_x/SiO₂ (Fig. 2(b)). On the other hand, the PtCl_x/N-TiO₂ exhibits three different types of doublet peaks $(4f_{5/2} \text{ and } 4f_{7/2})$ at 79.3 and 76.2 eV for Pt⁴⁺ as major species, at 77.3 and 74.2 eV for Pt²⁺, 75.4 and 72.3 eV for Pt⁰ as minor species (Fig. 2(c)). Moreover, the PtCl_x/TiO₂ also exhibits similar Pt 4f spectrum with that of the $PtCl_x/N$ - TiO_2 (Fig. 2(d)). On the other hand, Pt^0/N - TiO_2 thermally reduced at 473 K for 1 h exhibits doublet peaks at 75.4 and 72.3 eV for Pt^0 , while the $PtCl_x/SiO_2$ shows those at 77.3 and 74.2 eV for Pt^{2+} , and at 75.4 and 72.3 eV for Pt^0 (Fig. 2(e and f)). Thus, platinum species with different oxidation states is deposited on the supports, and, in particular, the N- TiO_2 or TiO_2 are modified by platinum(+IV) chloride as a major species.

When the photocatalytic activity was compared with samples calcinated at each temperature (473–873 K), the N-TiO₂ calcinated at 673 K showed the highest photocatalytic activity. Fig. 3 shows the reaction time profile on the yields of CO₂ for the photocatalytic decomposition of acetic acid in an aqueous solution on the N-TiO₂ calcinated at 673 K. It is observed that the yields of CO₂ increases with a linearity against the reaction time on N-TiO₂ under $\lambda > 420$ nm, while no products are observed in the dark. Furthermore, the PtCl_x/N-TiO₂ (0.8 wt.% as Pt) showed seven times higher photocatalytic

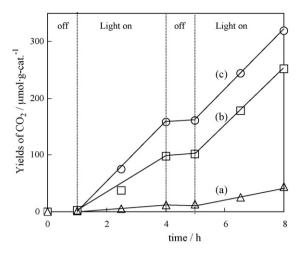


Fig. 3. Reaction time profiles for the photocatalytic decomposition of (a) acetic acid on N-TiO₂, (b) acetic acid and (c) acetaldehyde on PtCl_x/N-TiO₂ (0.8 wt.% as Pt) under $\lambda > 420$ nm.

activity than N-TiO₂ under $\lambda > 420$ nm. The turnover numbers (TONs), defined as the number of acetic acid molecules consumed per number of total platinum ions, were estimated to be about 4 on PtCl_x/N-TiO₂ (0.8 wt.% as Pt) within 6 h. It is also observed that acetaldehyde in an aqueous solution is photocatalytically decomposed into CO₂ under $\lambda > 420$ nm.

Fig. 4 shows the dependence of platinum loadings on the photocatalytic activity of the PtCl_x/N-TiO₂ under both UV-light and visible light irradiation. This result suggests as follows: (1) the photocatalytic activity is optimized at the content of 0.8 wt.% as Pt and (2) the activity on the PtCl_x/N-TiO₂ is enhanced by seven times under visible light irradiation, and by 1.5 times under UV-light irradiation, compared with that of N-TiO₂.

Table 1 shows the yields of CO_2 for the decomposition of acetic acid or acetaldehyde in the presence of O_2 on various samples under $\lambda > 420$ nm. The photocatalytic activities of samples for the decomposition of acetic acid or acetaldehyde are in the following order: $PtCl_x/N-TiO_2 \gg Pt^0/N-TiO_2 > N-TiO_2 > PtCl_x/TiO_2$ (ST-01 or P-25) $> TiO_2 \approx PtCl_x/SiO_2 \approx 0$.

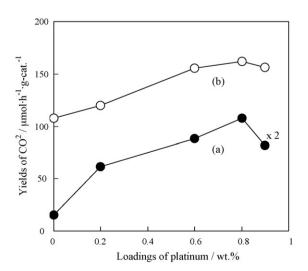


Fig. 4. Dependence of platinum loadings on $PtCl_x/N-TiO_2$ for the photocatalytic decomposition of acetic acid under (a) $\lambda > 420$ nm and (b) $\lambda > 320$ nm.

Table 1 Yields of photo-formed CO_2 for the photocatalytic decomposition of acetic acid and acetaldehyde under $\lambda > 420$ nm on various samples

Samples	Yields of CO ₂ (μmol h ⁻¹ g-cat ⁻¹)	
	Acetic acid	Acetaldehyde
TiO ₂ (P-25)	≈0	≈0
PtCl _x /TiO ₂ (P-25)	2.0	1.2
TiO ₂ (ST-01)	≈0	≈ 0
PtCl _x /TiO ₂ (ST-01)	4.5	2.8
Pt ⁰ /TiO ₂ (ST-01)	≈0	≈ 0
N-TiO ₂	7.5	6.3
PtCl _x /N-TiO ₂	54	32
Pt ⁰ /N-TiO ₂	14.5	10.8
PtCl _x /SiO ₂	≈0	≈0

In fact, the PtCl_x/N-TiO₂ retains pale yellows under photocatalytic reactions in the presence of O₂. XPS analysis also supports that the Pt⁴⁺ ions are still predominant in the PtCl_x/N-TiO₂ used by photocatalytic reactions, while the platinum ions are photo-reduced in the absence of O₂. These results indicate as follows: (1) the photo-induced electrons and holes on platinum chloride by itself do not directly participate in the photocatalytic reaction, and the surface of N-TiO₂ or TiO₂ plays a major role in the charge separation; (2) the presence of O₂ as an electron acceptor is important for the formation of active oxygen species; (3) the presence of platinum(+IV) chloride adsorbed on N-TiO₂ causes a drastic enhancement of photocatalytic activity rather than platinum metal particles.

Kisch et al. proposed a reaction mechanism for the degradation of 4-chlorophenol, i.e., a photo-induced electron transfer takes place from Cl^- to Pt^{4+} on $PtCl_4/TiO_2$ under visible light irradiation, so that the photo-formed chlorine atoms oxidize the substrate, while the photo-formed electrons trapped in the TiO_2 matrix induces the reduction of oxygen to form super oxide anion radicals, O_2^- species, followed by the oxidation of the substrate [20–24].

In our system, a schematic diagram of the photo-induced charge separation on PtCl_x/N-TiO₂ has been proposed in Fig. 5.

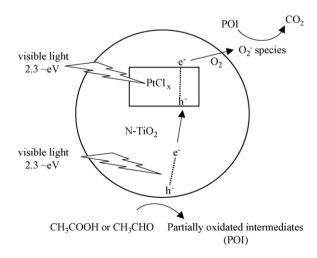


Fig. 5. Schematic diagram of the photo-induced charge separation on PtCl_x/N-TiO₂ for the photocatalytic reactions under visible light irradiation.

Charge separation of the photo-induced holes and electrons $(h^+ \cdot \cdot \cdot e^-)$ is seen to take place on $PtCl_x/N-TiO_2$ by double excitation of both N-TiO₂ and PtCl_x under visible light irradiation. The photo-induced holes on N-TiO₂ can oxidize the reactants, and electrons are scavenged by the holes on PtCl_x as electron acceptors. From an analysis of Motto-Schottky plots of N-TiO₂ or PtCl_y/N-TiO₂ in an aqueous solution of acetic acid, the flatband potentials of N-TiO₂ and PtCl_x/N-TiO₂ were estimated to be at -0.20 and -0.18 V versus NHE, respectively. Judging from the flatband potential of PtCl_x/N- TiO_2 at -0.18 V and the redox potential of O_2/O_2 couple at -0.16 V versus NHE [25], the photo-induced electrons on the surface of PtCl_x/N-TiO₂ transfer to form O₂ species, leading to the multi-step reactions. Thus, the mechanism for the photocatalytic decomposition of acetic acid or acetaldehyde on PtCl_x/N-TiO₂ under visible light irradiation could be proposed as a Z-scheme reaction.

4. Conclusions

Simply prepared N-TiO₂ works as visible light sensitive photocatalyst. Moreover, the photocatalytic activity was remarkably improved when the N-TiO₂ was modified by platinum chloride. It was concluded that this enhancement is caused by the double excitation between platinum(+IV) chloride and N-TiO₂ as a Z-scheme mechanism for charge separation. These materials show promise for applications in various photocatalytic systems.

Acknowledgements

Authors would like to thank Dr. M. Kitano for measurement and analysis of XPS, and Prof. M. Anpo and Dr. M. Matsuoka for useful discussion at Osaka Prefecture University.

References

- [1] A. Fuiishima, K. Honda, Nature 238 (1972) 37.
- [2] R. Asahi, T. Morikawa, K. Aoki, Y. Taga, Science 293 (2001) 269.
- [3] S. Sato, Chem. Phys. Lett. 123 (1986) 126.
- [4] M. Anpo, S. Dohshi, M. Kitano, Y. Hu, Chem. Ind. 108 (2006) 595.
- [5] S. Sato, R. Nakamura, S. Abe, Appl. Catal. A 284 (2005) 131.
- [6] H. Irie, Y. Watanabe, K. Hashimoto, J. Phys. Chem. B 108 (2003) 5483.
- [7] M. Bazil, E.H. Morales, U. Diebold, Phys. Rev. Lett. 96 (2006) 26103.
- [8] S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C. Di Valentin, G. Pacchioni, J. Am. Chem. Soc. 128 (2006) 15666 (references therein).
- [9] S. In, A. Orlov, F. Garcia, M. Tikhov, D.S. Wright, R.M. Labbert, Chem. Commun. (2006) 4236.
- [10] S. Sakthivel, M. Janczarek, H. Kisch, J. Phys. Chem. B 108 (2004) 19384.
- [11] T. Morikawa, R. Asahi, R. Ohwaki, K. Aoki, Y. Taga, Appl. Phys. Lett. 86 (2005) 132104.
- [12] K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44 (2005) 8269.
- [13] T. Morikawa, Y. Irokawa, T. Ohwaki, Appl. Catal. A 314 (2006) 123.
- [14] T. Ohno, Z. Miyamoto, K. Nishijima, H. Kanemitsu, F. Xueyuan, Appl. Catal. A 302 (2006) 62.
- [15] S. Higashimoto, K. Takamatsu, M. Azuma, M. Kitano, M. Matsuoka, M., in press. Anpo, Catal. Lett.
- [16] W. Macyk, H. Kisch, Chem. Eur. J. 7 (2001) 1862.
- [17] V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Chem. Commun. (2005) 2627.
- [18] J.A. Rodriguez, T. Jirsak, J. Dvorak, S. Sambasivan, D. Fischer, J. Phys. Chem. B 104 (2000) 319.
- [19] O. Diwald, T.L. Thompson, T. Zubkov, E.G. Goralski, S.D. Walck, J.T. Yates Jr., J. Phys. Chem. B 108 (2004) 6004.
- [20] L. Zang, C. Lange, I. Abraham, S. Storck, W.F. Maier, H. Kisch, J. Phys. Chem. B 102 (1998) 10765.
- [21] L. Zang, W. Macyk, C. Lange, W.F. Maier, C. Antonius, D. Meissner, H. Kisch, Chem. Eur. J. 6 (2000) 379.
- [22] H. Kisch, W. Macyk, Chemphyschem 3 (2002) 399.
- [23] H. Kisch, L. Zang, C. Lange, W.F. Maier, C. Antonius, D. Meissner, Angew. Chem. Int. Ed. 37 (1998) 3034.
- [24] W. Macyk, G. Burgeth, H. Kisch, Photochem. Photobiol. Sci. 2 (2003) 322.
- [25] D.T. Sawyer, J.S. Valentine, Acc. Chem. Res. 14 (1981) 393.